8080 measured reflections 3679 independent reflections

 $R_{\rm int} = 0.029$

refinement $\Delta \rho_{\text{max}} = 0.13 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

2645 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4*R*,5*S*)-Methyl 1,3-dibenzyl-5-[(*R*)-2-(hydroxydiphenylmethyl)pyrrolidine-1-carbonyl]-2-oxoimidazolidine-4-carboxylate

Jian Liu,^a Fen-Er Chen^{a,b}* and Min-Qin Chen^c

^aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China, ^bDepartment of Chemistry, Fudan University, Shanghai 200433, People's Republic of China, and ^cResearch Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China Correspondence e-mail: rfchen@fudan.edu.cn

Received 6 September 2007; accepted 18 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.042; wR factor = 0.111; data-to-parameter ratio = 9.0.

The title compound, $C_{37}H_{37}N_3O_5$, was synthesized as a key intermediate in the total synthesis of d-biotin and was crystallized from 2-propanol. It contains one chiral center in the pyrrole ring, where the absolute configuration is known from the synthesis, and from which the two other chiral centers in the imidazolidine ring could be determined. An intramolecular $O-H\cdots O$ and intermolecular $C-H\cdots O$ hydrogen bonds help to construct the three-dimensional network.

Related literature

For related literature, see: Chen et al. (2003).

Experimental

Crystal data

C ₃₇ H ₃₇ N ₃ O ₅	$V = 1591.5 (10) \text{ Å}^3$
$M_r = 603.70$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 12.075 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 10.907 (4) Å	T = 293 (2) K
c = 12.328 (4) Å	$0.20 \times 0.12 \times 0.10 \text{ mm}$
$\beta = 101.396 \ (5)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.983, T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$
$wR(F^2) = 0.111$
S = 1.02
3679 reflections
411 parameters
2 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5X\cdots O4$	0.825 (18)	2.00 (2)	2.762 (3)	153 (3)
$C4 - H4 \cdots O1^{i}$	0.98	2.57	3.328 (3)	135
$C5 - H5 \cdots O1^{i}$	0.98	2.57	3.320 (3)	133
$C16-H16\cdots O4^{i}$	0.93	2.62	3.383 (4)	139
$C17 - H17 \cdots O5^{i}$	0.93	2.80	3.544 (5)	138
C32−H32···O5 ⁱⁱ	0.93	2.58	3.435 (5)	153
$C37 - H37 \cdots O1^{iii}$	0.93	2.50	3.336 (4)	150

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z$; (ii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iii) x, y, z + 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2097).

References

- Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, F.-E., Yuan, J.-L., Dai, H.-F., Kuang, Y.-Y. & Chu, Y. (2003). Synthesis, 14, 2155-2160.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, 04127 [doi:10.1107/S1600536807045874]

(4*R*,5*S*)-Methyl 1,3-dibenzyl-5-[(*R*)-2-(hydroxydiphenylmethyl)pyrrolidine-1-carbonyl]-2-oxoim-idazolidine-4-carboxylate

J. Liu, F.-E. Chen and M.-Q. Chen

Comment

In our ongoing research on the total synthesis of d-biotin, an efficient and highly diastereoselective approach was developed with (4R,5S)-methyl 1,3-dibenzyl-5- ((R)-2-(hydroxydiphenylmethyl)pyrrolidine-1-carbonyl)-2- oxoimidazolidine-4-carboxylate(I) prepared as a key intermediate. Determination of the three-dimensional structure would help us to investigate the absolute configurations of the three chiral centers. Herein, we report the crystal structure of the title compound (I).

Fig. 1 shows the molecular structure of (I). Due to the certainty of C24 being *R*-configuration, based on the synthesis, the diffraction analysis indicates that the two other chiral carbon atoms (C4 and C5) have R– and S-configurations respectively. The strong O5—H5X···O4 intramolecular hydrogen bond may enhance the molecular stability of this compound. Intermolecular C—H···O hydrogen bonds lead to a three-dimensional network.

Experimental

To a solution of (4R,5S)-1,3-dibenzyl-5-((*R*)-2-(hydroxydiphenylmethyl) pyrrolidine-1-carbonyl)-2- oxoimidazolidine-4carboxylic acid (8 g, 13.68 mmol) in acetone (100 ml) was added NaOH (1.13 g, 27.36 mmol). After stirring at r.t. for 2 h, Me₂SO₄ (2.57 ml, 27.36 mmol) was added, followed by a catalytic amount of Bu₄NI. Then the reaction mixture was heated under reflux for 10 h. The solvent was evaporated *in vacuo*, 5% aq NH₄Cl (50 ml) was added and extracted with CH₂Cl₂. The combined organic layers were washed with 5% aq NaHCO₃ (50 ml), H₂O (50 ml) and brine (50 ml), and dried (MgSO₄). Evaporation of the solvent under reduced pressure gave the crude product, which was washed with Et₂O to afford a white powder (6.4 g, 78%), m.p. 444 K. Recrystallization from 2-propanol yielded colorless crystals of the title compound suitable for X-ray diffraction.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. Methyl groups were allowed to rotate freely about the C—C bond.

Figures

Fig. 1. Molecular structure of the title compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are indicated by dashed lines.

Fig. 2. The formation of the title compound.

(4*R*,5S)-Methyl 1,3-dibenzyl-5-[(*R*)-2-(hydroxydiphenylmethyl)pyrrolidine-1-carbonyl]- 2-oxoimidazolidine-4-carboxylate

 $F_{000} = 640$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5 - 21.2^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

Prism, colorless

 $0.20\times0.12\times0.10~mm$

 $D_{\rm x} = 1.260 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 793 reflections

Crystal data $C_{37}H_{37}N_{3}O_{5}$ $M_{r} = 603.70$ Monoclinic, $P2_{1}$ Hall symbol: P 2yb a = 12.075 (4) Å b = 10.907 (4) Å c = 12.328 (4) Å $\beta = 101.396$ (5)° V = 1591.5 (10) Å³ Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3679 independent reflections
Radiation source: fine-focus sealed tube	2645 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 293(2) K	$\theta_{\text{max}} = 27.2^{\circ}$
φ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 15$
$T_{\min} = 0.983, T_{\max} = 0.992$	$k = -13 \rightarrow 13$
8080 measured reflections	$l = -15 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2) + (0.0606P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.111$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.13 \text{ e } \text{\AA}^{-3}$
3679 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
411 parameters	Extinction correction: none
2 restraints	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	,

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.01834 (19)	0.4307 (2)	-0.02044 (17)	0.0663 (6)
O2	-0.23633 (19)	0.5563 (3)	0.19449 (19)	0.0850 (7)
O3	-0.16338 (16)	0.7314 (2)	0.27063 (17)	0.0651 (5)
O4	0.03920 (15)	0.54484 (17)	0.32417 (14)	0.0531 (4)
O5	0.24961 (16)	0.56160 (19)	0.46064 (15)	0.0568 (5)
H5X	0.1866 (18)	0.535 (3)	0.432 (2)	0.064 (10)*
N1	0.07821 (18)	0.5786 (2)	0.11061 (18)	0.0528 (5)
C2	0.0000 (2)	0.5168 (3)	0.0374 (2)	0.0494 (6)
N3	-0.10202 (19)	0.5674 (2)	0.03674 (18)	0.0563 (6)
C4	-0.0978 (2)	0.6659 (3)	0.1152 (2)	0.0485 (6)
H4	-0.1218	0.7420	0.0752	0.058*
C5	0.03034 (19)	0.6750 (2)	0.16817 (19)	0.0456 (6)
Н5	0.0605	0.7551	0.1527	0.055*
C6	0.1946 (2)	0.5416 (3)	0.1395 (2)	0.0644 (8)
H6A	0.2011	0.4594	0.1113	0.077*

H6B	0.2160	0.5376	0.2195	0.077*
C7	0.2781 (2)	0.6236 (4)	0.0971 (2)	0.0673 (9)
C8	0.3910 (3)	0.5966 (7)	0.1312 (3)	0.120 (2)
H8	0.4132	0.5337	0.1817	0.144*
C9	0.4715 (4)	0.6629 (10)	0.0905 (5)	0.151 (3)
Н9	0.5478	0.6470	0.1159	0.181*
C10	0.4386 (6)	0.7515 (7)	0.0132 (6)	0.145 (3)
H10	0.4931	0.7932	-0.0161	0.174*
C11	0.3266 (5)	0.7808 (4)	-0.0226 (4)	0.1065 (15)
H11	0.3046	0.8425	-0.0745	0.128*
C12	0.2469 (3)	0.7147 (3)	0.0215 (3)	0.0752 (9)
H12	0.1707	0.7333	-0.0012	0.090*
C13	-0.1988 (2)	0.5433 (3)	-0.0507 (2)	0.0642 (8)
H13A	-0.2667	0.5504	-0.0202	0.077*
H13B	-0.1943	0.4593	-0.0753	0.077*
C14	-0.2106 (2)	0.6261 (3)	-0.1498 (2)	0.0553 (7)
C15	-0.1246 (3)	0.6958 (3)	-0.1739 (3)	0.0680 (8)
H15	-0.0548	0.6953	-0.1259	0.082*
C16	-0.1398 (4)	0.7672 (3)	-0.2687(3)	0.0838 (11)
H16	-0.0810	0.8153	-0.2836	0.101*
C17	-0.2416 (5)	0.7661 (4)	-0.3396 (3)	0.1025 (14)
H17	-0.2527	0.8137	-0.4035	0.123*
C18	-0.3259(5)	0.6967 (6)	-0.3174 (4)	0.136 (2)
H18	-0.3951	0.6958	-0.3664	0.163*
C19	-0.3110 (4)	0.6273 (4)	-0.2236(4)	0.1092 (16)
H19	-0.3705	0.5798	-0.2097	0.131*
C20	-0.1737(2)	0.6415 (3)	0.1980 (2)	0.0556 (7)
C21	-0.2295(3)	0 7239 (5)	0 3560 (3)	0.0907 (12)
H21A	-0.1970	0.6637	0.4098	0.136*
H21B	-0.3055	0.7007	0.3237	0.136*
H21C	-0 2298	0 8022	0 3914	0.136*
C22	0.05575 (19)	0.6489 (2)	0 2923 (2)	0.0435 (6)
N23	0.09866 (16)	0 7391 (2)	0.36102(17)	0.0465(5)
C24	0 1154 (2)	0.7207 (3)	0.4816 (2)	0.0496(6)
H24	0.0571	0.6641	0 4965	0.060*
C25	0.0911 (3)	0.8475 (3)	0 5232 (3)	0.0693 (9)
H25A	0.1362	0.8622	0.5964	0.083*
H25B	0.0119	0.8555	0.5266	0.083*
C26	0.1229 (3)	0.9373 (3)	0.3200 0.4395(3)	0.0792 (10)
H26A	0.0771	1 0108	0.4350	0.095*
H26B	0.2019	0.9602	0.4603	0.095*
C27	0.1008 (3)	0.8700 (3)	0.3306 (3)	0.055
H27A	0.0291	0.8948	0.2856	0.076*
H27R	0.1603	0.8859	0.2899	0.076*
C28	0 2328 (2)	0.6636 (3)	0.5283 (2)	0.0471 (6)
C29	0.2326(2)	0.7552 (3)	0.5205(2)	0.0548(7)
C30	0.3230(2) 0.3740(2)	0.7603 (4)	0.3227(2)	0.0726 (9)
H30	0.3523	0 7048	0 3731	0.087*
C31	0.4557 (3)	0.8490 (5)	0.4738(4)	0 1074 (15)
0.01	0.1007 (0)	0.0100 (0)	0.1200(1)	0.10/ + (13)

H31	0.4884	0.8525	0.3616	0.129*
C32	0.4875 (4)	0.9301 (6)	0.5076 (6)	0.130 (2)
H32	0.5432	0.9876	0.5031	0.156*
C33	0.4378 (4)	0.9283 (4)	0.5999 (4)	0.1076 (15)
H33	0.4570	0.9867	0.6554	0.129*
C34	0.3595 (3)	0.8387 (3)	0.6081 (3)	0.0752 (10)
H34	0.3289	0.8340	0.6715	0.090*
C35	0.2425 (2)	0.6118 (3)	0.6452 (2)	0.0516 (7)
C36	0.1531 (3)	0.6007 (3)	0.6997 (2)	0.0658 (9)
H36	0.0834	0.6351	0.6696	0.079*
C37	0.1683 (4)	0.5377 (4)	0.8000 (3)	0.0817 (11)
H37	0.1077	0.5297	0.8357	0.098*
C38	0.2689 (4)	0.4881 (3)	0.8464 (3)	0.0838 (11)
H38	0.2769	0.4454	0.9128	0.101*
C39	0.3598 (3)	0.5011 (4)	0.7949 (3)	0.0831 (10)
H39	0.4299	0.4685	0.8267	0.100*
C40	0.3455 (3)	0.5627 (3)	0.6962 (3)	0.0706 (8)
H40	0.4072	0.5718	0.6621	0.085*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0971 (15)	0.0533 (11)	0.0537 (12)	-0.0013 (11)	0.0272 (10)	-0.0088 (11)
O2	0.0767 (14)	0.106 (2)	0.0775 (15)	-0.0347 (15)	0.0281 (11)	-0.0103 (14)
O3	0.0695 (12)	0.0692 (13)	0.0625 (12)	0.0099 (11)	0.0273 (9)	-0.0043 (12)
O4	0.0664 (11)	0.0444 (11)	0.0489 (10)	-0.0070 (9)	0.0123 (8)	0.0011 (9)
O5	0.0564 (11)	0.0635 (12)	0.0511 (10)	0.0091 (10)	0.0119 (9)	-0.0118 (10)
N1	0.0516 (11)	0.0598 (14)	0.0484 (12)	0.0059 (10)	0.0132 (9)	-0.0049 (11)
C2	0.0643 (16)	0.0521 (16)	0.0343 (13)	-0.0061 (13)	0.0157 (12)	0.0027 (13)
N3	0.0583 (13)	0.0635 (15)	0.0456 (12)	-0.0017 (12)	0.0065 (9)	-0.0038 (11)
C4	0.0532 (14)	0.0468 (14)	0.0451 (14)	0.0035 (12)	0.0088 (11)	0.0043 (12)
C5	0.0517 (13)	0.0424 (14)	0.0447 (14)	-0.0008 (11)	0.0145 (11)	0.0011 (11)
C6	0.0613 (16)	0.080 (2)	0.0540 (16)	0.0163 (16)	0.0176 (12)	0.0009 (16)
C7	0.0549 (15)	0.094 (2)	0.0537 (17)	-0.0020 (16)	0.0129 (13)	-0.0258 (18)
C8	0.059 (2)	0.214 (6)	0.084 (3)	0.000 (3)	0.0053 (18)	-0.009 (3)
C9	0.058 (2)	0.269 (9)	0.125 (4)	-0.015 (4)	0.016 (3)	-0.028 (5)
C10	0.110 (4)	0.177 (7)	0.166 (6)	-0.068 (4)	0.074 (4)	-0.073 (5)
C11	0.134 (4)	0.076 (3)	0.131 (4)	-0.022 (3)	0.078 (3)	-0.026 (3)
C12	0.078 (2)	0.066 (2)	0.091 (2)	-0.0051 (17)	0.0397 (18)	-0.014 (2)
C13	0.0658 (17)	0.073 (2)	0.0515 (15)	-0.0191 (16)	0.0059 (13)	-0.0018 (16)
C14	0.0603 (15)	0.0552 (17)	0.0482 (15)	-0.0049 (13)	0.0051 (12)	-0.0015 (13)
C15	0.0721 (19)	0.070 (2)	0.0630 (18)	0.0012 (15)	0.0174 (15)	0.0069 (16)
C16	0.116 (3)	0.065 (2)	0.081 (2)	0.006 (2)	0.045 (2)	0.0091 (19)
C17	0.159 (4)	0.080 (3)	0.060 (2)	0.008 (3)	0.001 (3)	0.014 (2)
C18	0.125 (4)	0.142 (5)	0.113 (4)	-0.033 (4)	-0.044 (3)	0.052 (4)
C19	0.092 (3)	0.116 (3)	0.102 (3)	-0.031 (3)	-0.025 (2)	0.035 (3)
C20	0.0508 (14)	0.0655 (19)	0.0503 (16)	0.0021 (14)	0.0093 (11)	0.0036 (14)
C21	0.090 (2)	0.118 (3)	0.075 (2)	0.020 (2)	0.0433 (18)	-0.005 (2)

C22	0.0414 (12)	0.0437 (16)	0.0470 (14)	-0.0007 (11)	0.0126 (10)	-0.0006 (12)
N23	0.0476 (11)	0.0422 (12)	0.0491 (12)	0.0006 (9)	0.0083 (9)	-0.0042 (10)
C24	0.0499 (13)	0.0555 (16)	0.0460 (14)	-0.0032 (12)	0.0155 (11)	-0.0104 (13)
C25	0.0664 (18)	0.073 (2)	0.067 (2)	0.0124 (16)	0.0112 (15)	-0.0271 (18)
C26	0.092 (2)	0.0491 (18)	0.088 (3)	0.0115 (17)	-0.0027 (19)	-0.0128 (18)
C27	0.0743 (19)	0.0384 (15)	0.073 (2)	0.0020 (13)	0.0058 (16)	-0.0025 (14)
C28	0.0484 (13)	0.0523 (15)	0.0419 (13)	-0.0010 (12)	0.0122 (10)	-0.0043 (12)
C29	0.0455 (13)	0.0647 (19)	0.0527 (15)	-0.0017 (13)	0.0058 (11)	0.0128 (14)
C30	0.0514 (15)	0.096 (3)	0.0727 (19)	-0.0014 (16)	0.0182 (13)	0.0189 (19)
C31	0.073 (2)	0.140 (4)	0.112 (3)	-0.023 (3)	0.026 (2)	0.042 (3)
C32	0.074 (3)	0.154 (5)	0.148 (4)	-0.053 (3)	-0.013 (3)	0.064 (4)
C33	0.106 (3)	0.094 (3)	0.103 (3)	-0.043 (3)	-0.030 (3)	0.017 (3)
C34	0.072 (2)	0.077 (2)	0.068 (2)	-0.0200 (18)	-0.0070 (16)	0.0021 (18)
C35	0.0585 (16)	0.0525 (16)	0.0451 (14)	-0.0079 (12)	0.0137 (12)	-0.0065 (13)
C36	0.0645 (17)	0.087 (2)	0.0488 (16)	-0.0235 (16)	0.0178 (13)	-0.0123 (16)
C37	0.107 (3)	0.096 (3)	0.0486 (17)	-0.044 (2)	0.0316 (18)	-0.0157 (19)
C38	0.132 (4)	0.070 (2)	0.0475 (18)	-0.019 (2)	0.014 (2)	-0.0023 (17)
C39	0.112 (3)	0.079 (2)	0.0565 (19)	0.020 (2)	0.0122 (19)	0.0123 (18)
C40	0.079 (2)	0.077 (2)	0.0581 (17)	0.0140 (17)	0.0210 (15)	0.0108 (17)

Geometric parameters (Å, °)

O1—C2	1.225 (3)	C18—H18	0.9300
O2—C20	1.194 (4)	С19—Н19	0.9300
O3—C20	1.317 (4)	C21—H21A	0.9599
O3—C21	1.443 (4)	C21—H21B	0.9599
O4—C22	1.230 (3)	C21—H21C	0.9599
O5—C28	1.429 (3)	C22—N23	1.335 (3)
O5—H5X	0.825 (18)	N23—C24	1.473 (3)
N1—C2	1.350 (3)	N23—C27	1.477 (4)
N1—C6	1.438 (4)	C24—C25	1.524 (4)
N1—C5	1.451 (3)	C24—C28	1.552 (4)
C2—N3	1.348 (4)	C24—H24	0.9800
N3—C4	1.439 (4)	C25—C26	1.526 (5)
N3—C13	1.449 (4)	C25—H25A	0.9700
C4—C20	1.524 (4)	C25—H25B	0.9700
C4—C5	1.559 (3)	C26—C27	1.506 (5)
C4—H4	0.9800	C26—H26A	0.9700
C5—C22	1.527 (3)	C26—H26B	0.9700
С5—Н5	0.9800	С27—Н27А	0.9700
C6—C7	1.516 (5)	С27—Н27В	0.9700
С6—Н6А	0.9700	C28—C29	1.513 (4)
С6—Н6В	0.9700	C28—C35	1.531 (4)
C7—C12	1.364 (5)	C29—C30	1.379 (4)
С7—С8	1.377 (5)	C29—C34	1.389 (4)
C8—C9	1.383 (9)	C30—C31	1.396 (6)
С8—Н8	0.9300	С30—Н30	0.9300
C9—C10	1.360 (10)	C31—C32	1.357 (8)
С9—Н9	0.9300	C31—H31	0.9300

C10—C11	1.375 (9)	C32—C33	1.387 (8)
C10—H10	0.9300	С32—Н32	0.9300
C11—C12	1.395 (5)	C33—C34	1.377 (5)
C11—H11	0.9300	С33—Н33	0.9300
C12—H12	0.9300	C34—H34	0.9300
C13—C14	1.503 (4)	C35—C36	1.384 (4)
C13—H13A	0.9700	C35—C40	1.386 (4)
C13—H13B	0.9700	C36—C37	1.395 (5)
C14—C19	1.364 (5)	С36—Н36	0.9300
C14—C15	1.365 (4)	C37—C38	1.349 (6)
C15—C16	1.386 (5)	С37—Н37	0.9300
C15—H15	0.9300	C38—C39	1.380 (6)
C16—C17	1.360 (6)	C38—H38	0.9300
C16—H16	0.9300	C39—C40	1.371 (5)
C17—C18	1.339 (7)	С39—Н39	0.9300
C17—H17	0.9300	C40—H40	0.9300
C18—C19	1.364 (6)		
C20—O3—C21	117.5 (3)	H21A—C21—H21B	109.5
C28—O5—H5X	107 (2)	O3—C21—H21C	109.5
C2—N1—C6	123.1 (2)	H21A—C21—H21C	109.5
C2—N1—C5	113.3 (2)	H21B-C21-H21C	109.5
C6—N1—C5	123.2 (2)	O4—C22—N23	123.1 (2)
O1—C2—N3	125.4 (2)	O4—C22—C5	118.6 (2)
O1—C2—N1	126.0 (2)	N23—C22—C5	118.3 (2)
N3—C2—N1	108.5 (2)	C22—N23—C24	119.8 (2)
C2—N3—C4	113.0 (2)	C22—N23—C27	125.2 (2)
C2—N3—C13	122.2 (2)	C24—N23—C27	112.5 (2)
C4—N3—C13	123.4 (2)	N23—C24—C25	102.6 (2)
N3—C4—C20	111.9 (2)	N23—C24—C28	111.25 (19)
N3—C4—C5	103.27 (19)	C25—C24—C28	117.5 (2)
C20—C4—C5	114.1 (2)	N23—C24—H24	108.4
N3—C4—H4	109.1	C25—C24—H24	108.4
C20—C4—H4	109.1	C28—C24—H24	108.4
C5—C4—H4	109.1	C24—C25—C26	105.3 (2)
N1—C5—C22	109.6 (2)	C24—C25—H25A	110.7
N1—C5—C4	101.96 (19)	C26—C25—H25A	110.7
C22—C5—C4	113.22 (18)	C24—C25—H25B	110.7
N1—C5—H5	110.6	C26—C25—H25B	110.7
С22—С5—Н5	110.6	H25A—C25—H25B	108.8
C4—C5—H5	110.6	C27—C26—C25	105.5 (3)
N1—C6—C7	115.6 (3)	C27—C26—H26A	110.7
N1—C6—H6A	108.4	C25—C26—H26A	110.7
С7—С6—Н6А	108.4	С27—С26—Н26В	110.7
N1—C6—H6B	108.4	C25—C26—H26B	110.7
С7—С6—Н6В	108.4	H26A—C26—H26B	108.8
H6A—C6—H6B	107.4	N23—C27—C26	104.7 (3)
C12—C7—C8	119.1 (4)	N23—C27—H27A	110.8
C12—C7—C6	123.6 (3)	С26—С27—Н27А	110.8
C8—C7—C6	117.0 (4)	N23—C27—H27B	110.8

С7—С8—С9	120.1 (6)	С26—С27—Н27В	110.8
С7—С8—Н8	119.9	H27A—C27—H27B	108.9
С9—С8—Н8	119.9	O5—C28—C29	107.3 (2)
C10—C9—C8	119.8 (5)	O5—C28—C35	105.6 (2)
С10—С9—Н9	120.1	C29—C28—C35	111.5 (2)
С8—С9—Н9	120.1	O5—C28—C24	108.7 (2)
C9—C10—C11	121.5 (5)	C29—C28—C24	110.4 (2)
С9—С10—Н10	119.3	C35—C28—C24	113.04 (19)
C11—C10—H10	119.3	C30—C29—C34	119.2 (3)
C10-C11-C12	117.7 (5)	C30—C29—C28	120.1 (3)
C10-C11-H11	121.2	C34—C29—C28	120.7 (3)
C12-C11-H11	121.2	C29—C30—C31	119.8 (4)
C7—C12—C11	121.7 (4)	С29—С30—Н30	120.1
С7—С12—Н12	119.2	С31—С30—Н30	120.1
C11—C12—H12	119.2	C32—C31—C30	120.2 (4)
N3—C13—C14	115.4 (2)	C32—C31—H31	119.9
N3—C13—H13A	108.4	C30—C31—H31	119.9
C14—C13—H13A	108.4	C31—C32—C33	120.8 (4)
N3—C13—H13B	108.4	С31—С32—Н32	119.6
C14—C13—H13B	108.4	С33—С32—Н32	119.6
H13A—C13—H13B	107.5	C34—C33—C32	119.0 (5)
C19—C14—C15	117.6 (3)	С34—С33—Н33	120.5
C19—C14—C13	118.5 (3)	С32—С33—Н33	120.5
C15—C14—C13	123.9 (3)	C33—C34—C29	120.9 (4)
C14—C15—C16	121.1 (3)	С33—С34—Н34	119.5
C14—C15—H15	119.4	С29—С34—Н34	119.5
С16—С15—Н15	119.4	C36—C35—C40	117.5 (3)
C17—C16—C15	119.3 (4)	C36—C35—C28	124.6 (2)
C17—C16—H16	120.3	C40—C35—C28	117.6 (2)
C15—C16—H16	120.3	C35—C36—C37	119.7 (3)
C18—C17—C16	120.0 (4)	С35—С36—Н36	120.2
С18—С17—Н17	120.0	С37—С36—Н36	120.2
С16—С17—Н17	120.0	C38—C37—C36	121.6 (3)
C17—C18—C19	120.6 (4)	С38—С37—Н37	119.2
C17—C18—H18	119.7	С36—С37—Н37	119.2
C19—C18—H18	119.7	C37—C38—C39	119.6 (3)
C14—C19—C18	121.4 (4)	С37—С38—Н38	120.2
C14—C19—H19	119.3	С39—С38—Н38	120.2
С18—С19—Н19	119.3	C40—C39—C38	119.1 (4)
O2—C20—O3	125.3 (3)	С40—С39—Н39	120.4
O2—C20—C4	124.9 (3)	С38—С39—Н39	120.4
O3—C20—C4	109.7 (3)	C39—C40—C35	122.5 (3)
O3—C21—H21A	109.5	С39—С40—Н40	118.8
O3—C21—H21B	109.5	С35—С40—Н40	118.8
C6—N1—C2—O1	-7.2 (4)	C4—C5—C22—O4	66.3 (3)
C5—N1—C2—O1	-179.1 (2)	N1-C5-C22-N23	131.0 (2)
C6—N1—C2—N3	174.1 (2)	C4—C5—C22—N23	-116.0 (2)
C5—N1—C2—N3	2.2 (3)	O4—C22—N23—C24	-7.5 (3)
O1—C2—N3—C4	178.9 (2)	C5-C22-N23-C24	174.9 (2)

N1—C2—N3—C4	-2.3 (3)	O4—C22—N23—C27	-168.1 (3)
O1—C2—N3—C13	-14.3 (4)	C5-C22-N23-C27	14.4 (3)
N1—C2—N3—C13	164.5 (2)	C22—N23—C24—C25	-145.6 (2)
C2—N3—C4—C20	-121.7 (2)	C27—N23—C24—C25	17.3 (3)
C13—N3—C4—C20	71.7 (3)	C22—N23—C24—C28	88.0 (3)
C2—N3—C4—C5	1.5 (3)	C27—N23—C24—C28	-109.2 (3)
C13—N3—C4—C5	-165.1 (2)	N23—C24—C25—C26	-28.8 (3)
C2—N1—C5—C22	119.0 (2)	C28—C24—C25—C26	93.6 (3)
C6—N1—C5—C22	-52.8 (3)	C24—C25—C26—C27	30.6 (3)
C2—N1—C5—C4	-1.2 (3)	C22—N23—C27—C26	163.1 (2)
C6—N1—C5—C4	-173.0 (2)	C24—N23—C27—C26	1.3 (3)
N3—C4—C5—N1	-0.2 (2)	C25-C26-C27-N23	-19.6 (3)
C20—C4—C5—N1	121.5 (2)	N23—C24—C28—O5	-47.9 (3)
N3—C4—C5—C22	-117.8 (2)	C25—C24—C28—O5	-165.8 (2)
C20—C4—C5—C22	3.9 (3)	N23—C24—C28—C29	69.5 (3)
C2—N1—C6—C7	109.6 (3)	C25-C24-C28-C29	-48.4 (3)
C5—N1—C6—C7	-79.4 (3)	N23—C24—C28—C35	-164.9 (2)
N1—C6—C7—C12	-10.7 (4)	C25—C24—C28—C35	77.3 (3)
N1—C6—C7—C8	174.6 (3)	O5—C28—C29—C30	27.7 (3)
C12—C7—C8—C9	1.2 (7)	C35—C28—C29—C30	142.9 (3)
C6—C7—C8—C9	176.1 (5)	C24—C28—C29—C30	-90.5 (3)
C7—C8—C9—C10	-2.7 (10)	O5-C28-C29-C34	-155.2 (2)
C8—C9—C10—C11	2.8 (10)	C35—C28—C29—C34	-40.0 (3)
C9—C10—C11—C12	-1.2 (8)	C24—C28—C29—C34	86.5 (3)
C8—C7—C12—C11	0.4 (5)	C34—C29—C30—C31	-0.2 (5)
C6—C7—C12—C11	-174.2 (3)	C28—C29—C30—C31	176.9 (3)
C10-C11-C12-C7	-0.4 (6)	C29—C30—C31—C32	0.0 (6)
C2-N3-C13-C14	-87.1 (3)	C30-C31-C32-C33	-1.5 (7)
C4—N3—C13—C14	78.2 (4)	C31—C32—C33—C34	3.3 (7)
N3-C13-C14-C19	-165.8 (4)	C32—C33—C34—C29	-3.6 (6)
N3-C13-C14-C15	17.9 (4)	C30-C29-C34-C33	2.0 (5)
C19-C14-C15-C16	1.4 (5)	C28—C29—C34—C33	-175.0 (3)
C13-C14-C15-C16	177.8 (3)	O5—C28—C35—C36	-110.4 (3)
C14-C15-C16-C17	-1.0 (5)	C29—C28—C35—C36	133.4 (3)
C15-C16-C17-C18	0.1 (7)	C24—C28—C35—C36	8.3 (4)
C16-C17-C18-C19	0.5 (8)	O5-C28-C35-C40	63.6 (3)
C15-C14-C19-C18	-0.9 (7)	C29—C28—C35—C40	-52.6 (4)
C13-C14-C19-C18	-177.4 (5)	C24—C28—C35—C40	-177.7 (3)
C17-C18-C19-C14	-0.1 (9)	C40-C35-C36-C37	-2.4 (4)
C21—O3—C20—O2	2.9 (4)	C28—C35—C36—C37	171.6 (3)
C21—O3—C20—C4	180.0 (3)	C35—C36—C37—C38	0.8 (5)
N3—C4—C20—O2	-5.5 (4)	C36—C37—C38—C39	0.9 (6)
C5—C4—C20—O2	-122.3 (3)	C37—C38—C39—C40	-1.1 (6)
N3—C4—C20—O3	177.4 (2)	C38—C39—C40—C35	-0.5 (6)
C5—C4—C20—O3	60.5 (3)	C36—C35—C40—C39	2.3 (5)
N1—C5—C22—O4	-46.7 (3)	C28—C35—C40—C39	-172.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O5—H5X…O4	0.825 (18)	2.00 (2)	2.762 (3)	153 (3)
C4—H4…O1 ⁱ	0.98	2.57	3.328 (3)	135
C5—H5···O1 ⁱ	0.98	2.57	3.320 (3)	133
C16—H16···O4 ⁱ	0.93	2.62	3.383 (4)	139
C17—H17···O5 ⁱ	0.93	2.80	3.544 (5)	138
C32—H32···O5 ⁱⁱ	0.93	2.58	3.435 (5)	153
C37—H37…O1 ⁱⁱⁱ	0.93	2.50	3.336 (4)	150

Symmetry codes: (i) -*x*, *y*+1/2, -*z*; (ii) -*x*+1, *y*+1/2, -*z*+1; (iii) *x*, *y*, *z*+1.

Fig. 2

